Synthesis and X-ray Structure of an H₂S Complex, $RuCl_2(P-N)(P(p-tolyl)_3)(SH_2)$ (P-N = o-(Diphenylphosphino)-N,N-dimethylaniline)

D. Chandrika Mudalige, Erin S. Ma, Steven J. Rettig, Brian R. James,* and William R. Cullen

Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1 Canada

Received June 26, 1997

The interaction of transition metal complexes with H₂S continues to attract attention. Such chemistry is of relevance in the biological sulfur cycle, in the formation of ores, in hydrodesulfurization catalysis, and in the use of H₂S as a source of H₂ and elemental sulfur (or organosulfur compounds). Literature dealing with these topics is plentiful and can be traced through recent references.^{1,2} However, isolation and characterization of metal complexes containing H₂S remain challenging,^{2,3} as such species tend to undergo oxidative addition reactions to give products with SH ligands or bridged or terminal sulfide,⁴ and only recently has an H₂S complex been characterized crystallographically.² This was the structure reported by Sellmann et al. of the Ru(II)-complex Ru(SH₂)(PPh₃)('S₄')•THF $(S_4' = 1, 2-bis[(2-mercaptophenyl)thio]ethane(2-))$ formed by the reaction of the polymeric complex $[Ru(PPh_3)('S_4')]_x$ with liquid H_2S at -70 °C; the reaction with H_2S gas at room temperature in THF resulted in a mixture of the bridging sulfide complex $[(\mu-S_2)\{Ru(PPh_3)('S_4')\}_2]$ and other uncharacterized products depicting the more typical reactivity of H₂S with transition metal complexes.²

We report here the synthesis, isolation, and spectroscopic and X-ray structural characterization of a $Ru(II)-H_2S$ complex, $RuCl_2(P-N)(PR_3)(SH_2)$, **2b**, where P-N is *o*-(diphenylphosphino)-*N*,*N*-dimethylaniline and R = p-tolyl (eq 1); spectro-

$$\begin{array}{l}
\operatorname{RuCl}_{2}(P-N)(PR_{3}) \xrightarrow{H_{2}S} \operatorname{RuCl}_{2}(P-N)(PR_{3})(SH_{2}) \\
\mathbf{1a}, R = Ph & \overrightarrow{\operatorname{Ar}} & \mathbf{2a}, R = Ph \\
\mathbf{1b}, R = p\text{-tolyl} & \mathbf{2b}, R = p\text{-tolyl}
\end{array} (1)$$

scopic evidence for complex 2a is also presented. To our knowledge, this is the first example of a structurally characterized transition metal-H₂S complex formed under ambient conditions.

Experimental procedures were carried out under N_2 or Ar using standard Schlenk techniques. Reagent grade C_6H_6 , hexanes, and THF were distilled from Na/benzoquinone under N₂ and were deoxygenated by freeze—thaw—pump cycles prior to use; CDCl₃ (Merck Frosst Canada) was dried over activated molecular sieves (Fisher 4A) and stored under Ar. Purified H₂S (Matheson) was used as supplied. The precursors, 5-coordinate complexes **1a,b**, were made as described previously.⁵ Solution NMR spectra were recorded on a Varian XL300 spectrometer (121.4 Mhz for ³¹P{¹H}) using TMS or PPh₃ (δ_P –5.59 in CDCl₃ vs 85% H₃PO₄) as external references, with positive shifts implying lower fields; δ_P shifts are reported relative to the H₃PO₄. IR spectra (Nujol mulls between KBr plates) were recorded on a Bomem MB-102 FT spectrometer.

Note that H_2S is extremely toxic and all experimentation involving this reagent should be carried out in a well-ventilated fume hood!

For the preparations of RuCl₂(o-Ph₂PC₆H₄NMe₂)(PR₃)(SH₂) (R = Ph, 2a; R = p-tolyl, 2b), H₂S gas (2 mL) was injected into a solution of RuCl₂(P-N)(PR₃) (1a or 1b, 0.06 mmol) in C_6H_6 (1 mL). Hexanes (10 mL) were added to the resultant red solution under Ar, and the mixture was stirred for 15 min. The yellow product (2a or 2b) was filtered off and dried under vacuum overnight (95% yield). Complex 2b was also prepared in 100% yield by reacting 0.03 mmol of powdered, solid 1b with H₂S gas (1 atm) at \sim 20 °C; the initially green solid turned vellow within 1 min, and the mixture was "stirred" for a further 2 h. Acceptable elemental analysis was obtained only for 2b. Anal. Calcd for C₄₁H₄₃Cl₂NP₂SRu: C, 60.37; H, 5.31; N, 1.72; S, 3.93. Found: C, 60.62; H, 5.33; N, 1.67; S, 4.25. ³¹P{¹H} NMR (CDCl₃, 20 °C, under 1 atm H₂S) [δ_A , δ_X (²*J* Hz)]: **2a**, 48.91, 42.82 (30.1); **2b**, 50.31, 40.91 (30.3). ¹H NMR (CDCl₃, 293 K, under 1 atm H₂S). 2a, δ 1.05 (br, 2H, Ru-SH₂), 2.97 (s, 3H, N-Me), 3.66 (s, 3H, N-Me), 6.50-8.40 (m, 26H, aromatic); **2b**, δ 0.95 (br, 2H, Ru–SH₂), 2.15 (s, 9H, Me of p-tolyl), 3.05 (s, 3H, N-Me), 3.41 (s, 3H, N-Me), 6.35-8.10 (m, 26H, aromatic). Each spectrum also shows a singlet at δ 0.75 due to free H₂S. Red-brown crystals of **2b** were grown by layering a THF solution of the complex with hexanes.

Crystallographic data for RuCl₂(o-Ph₂PC₆H₄NMe₂)[P(ptolyl)₃](SH₂) (2b) are given in Table 1. Measurements were collected on a Rigaku AFC6S diffractometer at 294 K. The final unit-cell parameters were obtained by least-squares analysis on the setting angles for 21 reflections with $2\theta = 10.60 - 17.20$. The intensities of 3 representative reflections, measured every 200 reflections throughout the data collection, decayed uniformly by 23.7%, and a polynomial correction factor was applied. The structure was solved by conventional heavy atom methods, the coordinates of the Ru atom being determined by the Patterson function and those of the remaining non-hydrogen atoms from a subsequent Fourier synthesis. The asymmetric unit contains a partially occupied water site on a 2-fold axis and a THF solvent site disordered about a 2-fold axis. Only one of the H₂S protons could be located. Solvent hydrogens were not included in the model. Calculations were performed using a TEXSAN/TEXRAY structure analysis package (Molecular

 ⁽a) Wong, T. Y. H.; Barnabas, A. F.; Sallin, D.; James, B. R. *Inorg. Chem.* **1995**, *34*, 2278. (b) McDonald, R.; Cowie, M. *Inorg. Chem.* **1993**, *32*, 1671. (c) Jessop, P. G.; Lee, C.-L.; Rastar, G.; James, B. R.; Lock, C. J. L.; Faggiani, R. *Inorg. Chem.* **1992**, *31*, 4601. (d) Shih, K.-Y.; Fanwick, P. E.; Walton, R. A. *Inorg. Chem.* **1992**, *31*, 3663.

 ^{(2) (}a) Sellmann, D.; Lechner, P.; Knoch, F.; Moll, M. Angew. Chem., Int. Ed. Engl. 1991, 30, 552. (b) Sellmann, D.; Lechner, P.; Knoch, F.; Moll, M. J. Am. Chem. Soc. 1992, 114, 922.

^{(3) (}a) Cecconi, F.; Innocenti, P.; Midollini, S.; Moneti, S.; Vacca, A.; Ramirez, J. A. J. Chem. Soc., Dalton Trans. 1991, 1129. (b) Besenyei, G.; Lee, C.-L.; Xie, Y.; James, B. R. Inorg. Chem. 1991, 30, 2446.
(c) Rabinovich, D.; Parkin, G. J. Am. Chem. Soc. 1991, 113, 5904.
(d) Antonelli, D. M.; Cowie, M. Inorg. Chem. 1990, 29, 3339. (e) Klein, D. P.; Kloster, G. M.; Bergman, R. G. J. Am. Chem. Soc. 1990, 112, 2022.

^{(4) (}a) Amarasekera, J.; Rauchfuss, T. B. Inorg. Chem. 1989, 28, 3875.
(b) Raab, K.; Beck, W. Chem. Ber. 1985, 118, 3830. (c) Urban, G.; Sunkel, K.; Beck, W. J. Organomet. Chem. 1985, 290, 329. (d) Crabtree, R. H.; Davis, M. W.; Mellea, M. F.; Mihelcic, J. M. Inorg. Chim. Acta 1983, 72, 223. (e) Harris, P. J.; Knox, S. A. R.; Mckinney, R. J.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1978, 1009. (f) Herberhold, M.; Suss, G. Angew. Chem., Int. Ed. Engl. 1976, 15, 366. (g) Kuehn, C. G.; Taube, H. J. Am. Chem. Soc. 1976, 98, 689. (h) Morelli, D.; Segre, A.; Ugo, R.; LaMonica, G.; Cenini, S.; Conti, F.; Bonati, F. Chem. Comm. 1967, 524.

⁽⁵⁾ Mudalige, D. C.; Rettig, S. J.; James, B. R.; Cullen, W. R. J. Chem. Soc., Chem. Commun. 1993, 830.

Table 1.	Crystal	llographic	Data
----------	---------	------------	------

compd	$RuCl_2(o-Ph_2PC_6H_4NMe_2)[P(p-MeC_6H_4)_3]-(SH_2)\cdot 0.5THF\cdot 0.41H_2O$	
formula	$C_{43}H_{47.82}O_{0.91}Cl_2NP_2RuS$	
fw	859.22	
cryst system	tetragonal	
space group	$I4_1/a$ (No. 88)	
a, Å	20.587(7)	
<i>c</i> , Å	38.51(1)	
<i>V</i> , Å ³	16322(9)	
Z	16	
$\rho_{\rm calc}, {\rm g/cm^3}$	1.398	
T, °C	21	
radiation	Mo	
μ , cm ⁻¹	6.8	
R(F)	0.048	
$R_{\rm w}(F)$	0.057	
${}^{a}R = \sum F_{a} - F_{a} / \sum F_{a} R_{a} = [\sum w(F_{a} - F_{a})^{2} / \sum w(F_{a} ^{2})^{1/2}$		

Figure 1. ORTEP plot of 2b (H atoms omitted for clarity). Thermal ellipsoids for non-hydrogen atoms are drawn at 33% probability.

Structure Corp., 1985). The final *R* and R_w values were 0.048 and 0.057, respectively, for 2365 reflections with $I \ge 2.0\sigma(I)$. Selected bond lengths and bond angles appear in Table 2 (Supporting Information). Complete tables of crystallographic data, atomic coordinates, anisotropic thermal parameters, bond lengths and angles, torsion angles, intermolecular contacts, and least-square planes are included as Supporting Information.

Interaction of the 5-coordinate species $\text{RuCl}_2(\text{P-N})(\text{PR}_3)$ (1)⁵ with 1 atm of H₂S in benzene, CHCl₃, or THF solution at 20 °C leads to rapid and quantitative formation of the H₂S species **2**; the reactions are reversible in solution if H₂S is removed by vacuum or by purging the system with Ar (see below). The complexes (2) were isolated as air-sensitive, yellow powders by the addition of hexanes and drying under vacuum (95% yield); **2b** was also formed quantitatively by reacting solid **1b** with 1 atm of H₂S at 20 °C, although surprisingly **1a** did not react with H₂S under corresponding conditions.

X-ray analysis of **2b** reveals a close to octahedral geometry around the Ru with *cis*-chlorides and the H₂S *trans* to a chloride (Figure 1). The *trans* bond angles are in the range 170.0– 174.6°, and the *cis* angles range from 81.3 to 94.3°. The chelate bite angle P(1)–Ru–N(1) of 81.3° is similar to that found in **1b** (81.81°).⁵ Only one H atom of the coordinated H₂S was located in the structure which thus erroneously portrays a

Ru(III)-mercapto complex, but the structural parameters, observed diamagnetism, reversible solution behavior, and spectroscopic evidence for coordinated H₂S ligand show the complex to be the Ru(II)-H₂S adduct. The Ru-S bond length of 2.330(4) Å is comparable to that of Sellmann's complex $(2.399(5) \text{ Å})^2$ and is significantly shorter than that of terminal mercapto complexes (average Ru-SH, 2.46 Å).^{1c,6} The length of the located S-H bond (1.25 Å) is shorter than that found in gaseous H₂S $(1.33 \text{ Å})^7$ and is in the range reported for Sellmann's complex (average 1.20 Å).² The Ru–Cl(1)(trans to phosphorus) (2.469 Å) and Ru-Cl(2)(trans to sulfur) (2.429 Å) distances are typical of those of related Ru(II) complexes^{6,8} and are longer than those in the corresponding Ru(III) species, mer-RuCl₃(P-N)(PPh₃): 2.40 Å (trans to phosphorus) and 2.33 Å (for mutually trans chlorines).⁹ The stability of the crystals of **2b** is unparalleled: the crystal stability of Sellman's H₂S complex results from intermolecular H-bonds between the H₂S ligand and both a S-atom of the macrocyclic ligand and a THF solvate, the solvent-free complex being labile and not characterizable crystallographically.² In **2b**, there are no such stabilizing interactions with the coordinated H₂S.

The ¹H NMR data reveal the coordinated H₂S and strong ν_{SH} IR bands at 2506 and 2476 cm⁻¹ (**2a**) and 2495 and 2449 cm⁻¹ (**2b**) compare with those of 2410 and 2290 cm⁻¹ of Sellman's complex which are lower because of the presence of the S-H···S and S-H···O hydrogen bridges. Unlike previously reported H₂S complexes, **2a**,**b** are fairly stable as solids under Ar and do not lose H₂S under vacuum over 24 h at ambient temperature, but they rapidly decompose to uncharacterized black solids when exposed to air.

In C₆D₆ solution under Ar, **2a,b** reversibly lose H₂S, and integrations of the NMR data yield, for example, a value of \sim 30 M⁻¹ at 20 °C for the associative equilibrium constant for the reaction **1b** + H₂S = **2b**.

Species **1** are highly reactive generally toward small molecules; we have reported on the η^2 -H₂ and η^1 -N₂ derivatives⁵ and will report elsewhere on the binding of O₂, CO, H₂O, SO₂, CH₃OH, and C₂H₅SH.⁹

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada and the University of British Columbia for financial support and Johnson Matthey Ltd. and Colonial Metals Inc. for the Ioan of RuCl₃·3H₂O.

Supporting Information Available: Table 2 (bond lengths and angles) and tables of crystallographic data, atomic coordinates and equivalent isotropic thermal parameters, hydrogen atom parameters, anisotropic thermal parameters, complete bond lengths and angles, torsion angles, intermolecular contacts, and least-square planes for the structure of **2b** (12 pages). Ordering information is given on any current masthead page.

IC9707772

- (6) Osakada, K.; Yamamoto, T.; Yamamoto, A. Inorg. Chim. Acta 1985, 105, L9.
- (7) Edwards, T. H.; Moncur, N. K.; Snyder, L. E. J. Chem. Phys. 1967, 46, 2139.
- (8) Schutte, R. P.; Rettig, S. J.; James, B. R. Can. J. Chem. 1996, 74, 2064.
- (9) (a) Mudalige, D. C. Ph.D. Dissertation, University of British Columbia, 1994. (b) Mudalige, D. C.; James, B. R.; Cullen, W. R.; Rettig, S. J. To be published.